Monatshefte für Chemie Chemical Monthlu

© Springer-Verlag 1993 Printed in Austria

Potassium Tetraphenylimidodiphosphinate Complex of 1,4,7,10,13,16-Hexaoxacyclooctadecane An Inorganic (Carbon-Free) Chelate Ring

R. Cea-Olivares* and M. A. Muñoz

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, D.F.

Summary. Potassium tetraphenylimidodiphosphinate, $[K][Ph_2P(O)NP(O)Ph_2]$, reacts with 18-crown-6 ether to give the monohydrated complex $[K(18\text{-crown-6}][Ph_2P(O)NP(O)Ph_2]\cdot H_2O$. The compound shows an interaction potassium—oxygen, forming an inorganic (carbon free) chelate ring and it is different to the sulphur homolog which has no interaction cation—anion.

Keywords. Alkaline complexes; Crown ether complexes; Imidodiphosphinate chelates; Inorganic rings; Phosphazene heterocycles.

Kaliumtetraphenylimidodiphosphinat-Komplex von 1,4,7,10,13,16-Hexaoxacyclooctadecan. Ein anorganischer (Kohlenstoff-freier) Chelat-Ring

Zusammenfassung. Kaliumtetraphenylimidodiphosphinat, $[K][Ph_2P(O)NP(O)Ph_2]$, reagiert mit 18-Krone-6-ether unter Ausbildung des mohydydratisierten Komplexes $[K(18\text{-}Krone-6)][Ph_2P(O)NP(O)Ph_2]$. Die Verbindung zeigt eine Kalium-Sauerstoff-Wechselwirkung under Formierung eines anorganischen (Kohlenstoff-freien) Chelat-Ringes. Dies ist im Gegensatz zum Schwefel-Analogen, das keine Kation-Anion-Wechselwirkung zeigt.

Introduction

Bis(diphenylphosphinoyl)amine, [according to IUPAC, N-(P, P-diphenylphosphinoyl)-P,P-diphenylphosphinimidic acid], 1, and its sulphur analog are powerful β -difunctional ligands, sterically unencumbered about the donor atom, and ideal to study the variations in stereochemistry of metal complexes through the formation of inorganic (carbon free) chelate rings [1].

The alkali salts from 1, $[M][(Ph_2P(O)NP(O)Ph_2](M = alkaline ion)$ have been mainly used to prepare O-bonded complexes with transition and representative ions including: Be [3], Al [4], Ga [5], In [6], Tl [5], Si, Ge [7, 8], Sn [8, 9], Bi [10], Mn [4], Co, Ni [6, 11], Cu [12], Zn [13], Cd, Hg [6], La, Pr, Nd, Eu [14, 15], Mo [16] $[UO_2][4]$, [ReO] [2]. Recently, there has been an increasing interest in the study of the structures of this kind of complexes and some X-ray determinations have been carried out [2, 8, 15, 16]. The structure of the free ligand has also been determined [17].

The alkaline salts of the sulphur homolog of 1, $[M][Ph_2P(S)NP(S)Ph_2]$, have been subjected to some studies. In this way Schmidpeter reported the lithium dioxan and THF adducts, as well as the potassium and ammonium derivatives [18], and McQuillan the IR of the potassium salt [19]. The structure of the free anion in the potassium complex with 1,4,7,10,13,16-Hexaoxacyclo-octadecane, (18-crown-6), $[K(18\text{-crown-6})][Ph_2P(S)NP(S)Ph_2]$ is also known [20].

1 has a very interesting and surprising structure. Previous to its X-ray structure determination [17] it was formulated as a compound with N-H bond [21] or as a molecule with the presence of a non-linear cyclic tautomer [22]. However, the crystal structure determination showed a linear PNP structure, with a symmetric OH-O hydrogen bridge, short PN bonds and long PO distances. It is interesting to note that there are very few examples of compounds with a 180° PNP angle [17].

In spite of the increasing interest in complexes with 1, almost nothing is known about their alkaline derivatives. Since the sulphur homolog in its 18-crown-6 potassium complex shows a free anion [20] without potassium-sulphur interaction and a PNP angle of $132.8(2)^{\circ}$ very similar with that of the free ligand [17], [132.62(11)°] and no strong band in the IR which could be attributed to the P_2N vibration, we undertook the present investigation in order to know a) if the [K(18-crown-6)][$Ph_2P(O)NP(O)Ph_2$] complex also shows the linear PNP arrangement of 1 as a free anion or if it is non-linear; b) if the compound is molecular with the presence of a chelate ring; c) to compare the IR spectrum with the corresponding sulphur derivative, and d) to help in structural and chemical comparisons with recently reported structural determinations.

Results and Discussion

The prepared complex, $[K(18\text{-crown-6})][Ph_2P(O)NP(O)Ph_2]\cdot H_2O$, is an air-stable solid, ready soluble in solvents such as EtOH, $CHCl_3$, acetone, but insoluble in H_2O and hexane. The analytical data indicate a 1:1:1 relation potassium tetraphenylimidodiphosphinato- crown ether. The ³¹P spectrum shows a single resonance, -12.2 ppm, not very far from the corresponding value of the $[K][Ph_2-P(O)NP(O)Ph_2]$, -10.5 ppm [10]. The IR spectrum presents a similar pattern to the potassium salt with a strong band appearing at ca. $1210 \, \text{cm}^{-1}$. It is known that this band is diagnostic for chelate complexes of the type $M_a[N(XPPh_2)_2]_b$ (X = O, S) and is related with the "fosfazene" vibration P_2N . The IR suggests a different structure to that of $[K(18\text{-crown-6})][Ph_2P(S)NP(S)Ph_2]$.

The X-ray structural determination showed the presence of a monohydrated inorganic (carbon free) chelate complex, that is a distinct molecule. The potassium ion is directly coordinated by the six O atoms of the crown ether, the two O atoms of the bidentate anion $[Ph_2P(O)]_2N$ and the O atom of a H_2O molecule (Fig. 1).

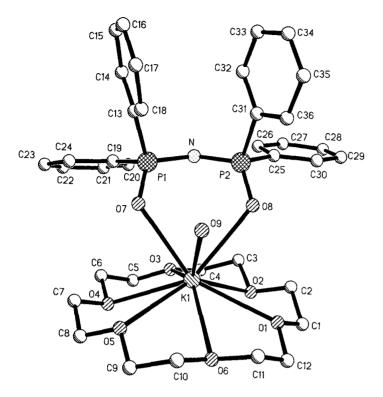


Fig. 1. X-Ray structure of $[K(18-crown-6)][Ph_2P(O)NP(O)Ph_2] \cdot H_2O$

Table 1. Selected bond lengths [Å] with estimated standard deviations in parentheses for $[K(18\text{-crown-6})][Ph_2P(O)NP(O)Ph_2] \cdot H_2O$

K(1)-O(1)	2.905(4)	K(1)-O(2)	3.037(5)
K(1)-O(3)	2.921(4)	K(1)-O(4)	2.991(5)
K(1)-O(5)	2.950(5)	K(1)-O(6)	2.983(5)
K(1)-O(7)	2.832(5)	K(1)-O(8)	2.925(4)
K(1)-O(9)	3.110(5)	P(1)-N	1.592(4)
P(2)-N	1.585(4)	P(1)-O(7)	1.503(3)
P(2)-O(8)	1.496(4)	P(1)-C(13)	1.819(5)
P(1)-C(19)	1.820(5)	P(2)-C(25)	1.819(5)
P(2)-C(31)	1.819(6)		

Table 2. Selected bond angles [°] with estimated standard deviations in parentheses for $[K(18\text{-crown-6})][Ph_2P(O)NP(O)Ph_2] \cdot H_2O$

O(7)-K(1)-O(8)	73.5(1)	P(1)-N-P(2)	129.3(3)
N-P(1)-O(7)	118.8(2)	N-P(2)-O(8)	119.3(2)
K(1)-O(7)-P(1)	117.1(2)	K(1)-O(8)-P(2)	116.8(2)
O(7)-P(1)-C(13)	109.0(2)	O(7)-P(1)-C(19)	109.2(2)
O(8)-P(2)-C(25)	109.5(2)	O(8)-P(2)-C(31)	109.2(2)
C(13)-P(1)-C(19)	106.2(2)	C(25)-P(2)-C(31)	102.1(2)

Table 1 presents selected bond lengths and Table 2 selected bond angles. The $Ph_2P(O)NP(O)Ph_2$ moiety has a fosfazene angle PNP of 129.3(3)° similar with that found in other chelate complexes with the title ligand [2, 8, 15, 16]. The two distances P-N are identical and the two P-O are slightly different. The angles around the phosphorous indicate a tetrahedral arrangement. The P-C distances are consistently larger that those found in other complexes [2] and in the free ligand, and correspond with the value of 1.82 Å present in PPh₃. The structural situation of the moiety K(18-crown-6) shows the six macrocyclic O atoms in a situation roughly coplanar, forming a least-squares plane (l.s.p.) with an average deviation of 0.20 Å and maximum deviation 0.27 Å for O(5). The K ion lies 1.05 Å above the plane of the ether O atoms, and the O(7), O(8), O(9) plane is practically parallel to the l.s.p. of the crown ether (dihedral angle of 2°).

There is a similar chelate complex to the one described here: potassium-(18-crown-6)-ethylacetoacetate enolate [24]. In this compound the potassium is also bound to both oxygens of the enolate atoms and to the six O atoms of the crown. The K-O(chelate) bond lengths in [K(18-crown-6)][$Ph_2(O)NP(O)Ph_2$]·H₂O, are slightly longer [2.832(3) and 2.925(4) Å] than those present in the ethylacetoacetate derivative [2.651 and 2.733 Å] [24].

[K(18-crown-6)][$Ph_2P(O)NP(O)Ph_2$]· H_2O presents a totally different structure to the sulphur derivative, it shows an interaction $Ph_2P(O)NP(O)Ph_2$ -metal and a cis situation. The six bonds K-O(crown ether) are not equivalent [2.905(4)-3.037(5) Å]. This fact and the 1.05 Å separation of the potassium above the plane of the oxygens of the crown ether prove the existence of a strong interaction anion-cation. The different behaviour of the crown ether metal complexes with sulphur and oxygen anions is known from other systems: KNCS is charge separated through effective complexation with 18-crown-6 [25], while K_2MoO_4 only partially so [26]. The stronger K-O bond, as well as the chelate effect, are responsible for the different behaviour of the [K(18-crown-ether)][$(Ph_2P(X)NP(X)Ph_2$] ($X = O_5$).

Experimental Part

All chemicals were of reagent grade and were used without further purification. Bis(diphenyl-phosphinoyl)amine was synthesized via methods already reported in the Ref. [23], its potassium salt, $K[Ph_2P(O)NP(O)Ph_2]$, was synthesized following Ref. [14].

 $\label{lem:monohydrated} Monohydrated\ Potassium\ (1,4,7,10,13,16-Hexaoxacyclooctadecane\)-N-(P,P-diphenylphosphinoyl)-P,P-diphenyl\ phosphinimidate,\ [K(18-crown-6)][Ph_2P(O)NP(O)Ph_2]\cdot H_2O$

[K][$Ph_2P(O)NP(O)Ph_2$] (0.455 g, 1 mmol) was dissolved in 25 ml methanol and was added to a solution of 18-crown-6 ether (0.264 g, 1 mmol) in 10 ml methanol. After stirring for one hour, the volume of the solution was reduced in vacuum at room temperature, until a solid began to precipitate. The reaction mixture was cooled in ice, the white solid was filtered and dried in air. Yield: 0.6 g (85%). Analysis for $C_{36}H_{46}K_1P_2N_1O_9$ (737.81): calcd. C 58.61, H 6.28, N 1.90; found C 58.55, H 6.25, N 1.85.

X-Ray Structure Determination

Crystal data: C₃₆H₄₆K₁P₂N₁O₉, mol. wt. 737.81, orthorombic, P2₁2₁2₁, a=10.130(3), b=15.492(5), c=24.092(7) Å, v=3781(1) Å³, z=4, Dx=1.296 g cm⁻³, MoK α , $\lambda=0.71069$, $\mu=2.7$ cm⁻¹, F(000)=1560.0, T=295 K, R=0.030 for 2111 unique observed reflections.

A colourless crystal of $0.28 \times 0.31 \times 0.34$ mm was used for measurements with a Enraf-Nonius CAD-4 diffractometer; graphite-monochromate MoK α radiation, ω/Θ scan technique, $2\Theta_{\rm max}$ 60°. Cell parameters were determined from a least-squares fitting of 24 reflections, $24 < 2\Theta < 28^{\circ}$. Crystal and instrument stability were monitored by remeasurement of two check reflections every 2 h: 2 9 2 and 0 $\overline{2}$ 15. Range in hkl:h 0 to 14, k 0 to 21, l 0 to 33. 5834 reflections measured, 2111 independent reflections with $l > 2\sigma(l)$ used for refinement. No absorption correction applied because of the small value of the μ .

Positions of K and two P-atoms were revealed by the Patterson method, positions of other non-H atoms were determined in three subsequent difference maps. The H atoms were positioned according to the idealized geometry with $d(C-H) = 0.96 \,\text{Å}$ and isotropic $U = 0.10 \,\text{Å}^2$. All non-H atoms were refined anisotropically using the block-diagonal least squares method with a total of 442 variables; R = 0.030 (with unit weight), S = 1.21. The H-atoms for the H₂O molecule were not localized. Atomic scattering factors from International Tables for X-ray Crystallography (1974). Structure solution using SHELXTL PC.

Acknowledgements

The authors wish to thank Dr. Andrey B. Il'uhin, Rubén Gaviño and Rocío Patiño for technical assistance, as well as Dr. Jacobo Gómez Lara for comments.

References

- [1] Haiduc I., Silaghi-Dumitrescu I. (1986) Coord. Chem. Rev. 74: 127
- [2] Rossi R., Marchi A., Magon L., Casellato U., Tamburini S., Graziani R. (1991) J. Chem. Soc. Dalton Trans 263
- [3] Paciorek K. L., Kratzer R. H. (1966) Inorg. Chem. 5: 189
- [4] Haiduc I., Botha V. P., Ziegler A. (000) 1er Symposium International de Chimie Hétérocyclique Minérale. Besançon 1975. Cited in Ref. 1
- [5] Cea-Olivares R. and Zimbrón A. unpublished results
- [6] Cea-Olivares R., Toscano R. A., Carreón G., Valdés-Martínez J. (1992) Monatsh. Chem. 123: 391
- [7] Schmidpeter A., Stoll K. (1968) Angew Chem. 80: 558. Intern. Ed. Engl. (1968) 7: 549
- [8] Schmidpeter A., Stoll K. (1967) Angew Chem. 79: 242. (1967) Intern. Ed. Engl. 7: 252
- [9] Day R. O., Holmes R. R., Schmidpeter A., Stoll K., Howe L. (1991) Chem. Ber. 124: 2443
- [10] Williams D. J. (1980) Inorg. Nucl. Chem. Lett. 16: 189
- [11] Davison A., Switkes E. S. (1971) Inorg. Chem. 10: 837
- [12] Keller H. J., Schmidpeter A. (1967) Z. Naturforsch. 22B: 231
- [13] Schmidpeter A., Böhm R., Groeger H. (1964) Angew. Chem. 76: 860. (1964) Intern. Ed. Engl. 3: 704
- [14] Rodríguez I., Alvarez C., Gómez-Lara J. Cea-Olivares R. (1985–1986) Lanthanide Actinide Res. 1: 253
- [15] Rodríguez I., Alvarez C., Gómez-Lara J., Toscano R. A., Platzer N., Mulheim C., Rudler H., Cea-Olivares R. (1987) J. Chem. Soc., Chem. Commun. 1502
- [16] Rietzel M., Roesky H. W., Katti K. V., Schmidt H. G., Herbst-Irmer R., Noltemeyer M., Sheldrick M., Symons M. C. R., Abu-Raqabah A. (1991) J. Chem. Soc., Dalton Trans. 263
- [17] Nöth H. (1982) Z. Naturforsch. 37B: 1491
- [18] Schmidpeter A., Groeger H. (1966) Z. Anorg. Allg. Chem. 345: 106
- [19] McQuillan G. P., Oxton I. A. (1982) Inorg. Chim. Acta. 29: 69
- [20] Cea-Olivares R., Nöth H. (1987) Z. Naturforsch. 42B: 1507
- [21] Korshak V. V., Gribova I. A., Artamanova T. V., Bushmarina A. N. (1960) Vysokomol. Soed. 2: 377. Cited in Schmulbach C. D. (1962) Progr. Inorg. Chem. 4: 1975

- [22] Fluck E., Goldmann F. L. (1963) Chem. Ber. 96: 3091
- [23] Wang F. T. Najdzionek J., Leneker K. L., Wasserman H., Braitsch D. M. (1987) Synth. React. Inorg. Met.-Org. Chem. 8: 119
- [24] Riche C., Pascard-Billy C., Cambillau C., Bram G. (1977) J. Chem. Soc., Chem. Comm. 183
- [25] Seiler P., Dobler M., Dunitz J. D. (1974) Acta Cryst. 30B: 2744
- [26] Nagano O. (1979) Acta Cryst. 35B: 464

Received June 5, 1992. Accepted July 1, 1992